A Stabilized Sqp Method: Global Convergence

نویسندگان

  • Philip E. Gill
  • Vyacheslav Kungurtsev
  • Daniel P. Robinson
چکیده

Stabilized sequential quadratic programming (SQP) methods for nonlinear optimization are designed to provide a sequence of iterates with fast local convergence regardless of whether or not the active-constraint gradients are linearly dependent. This paper concerns the global convergence properties of a stabilized SQP method with a primal-dual augmented Lagrangian merit function. The proposed method incorporates several novel features. (i) A flexible line search is used based on a direction formed from an approximate solution of a strictly convex QP subproblem and, when one exists, a direction of negative curvature for the primaldual merit function. (ii) When certain conditions hold, an approximate QP solution is computed by solving a single linear system defined in terms of an estimate of the optimal active set. The conditions exploit the formal equivalence between the conventional stabilized SQP subproblem and a bound-constrained QP associated with minimizing a quadratic model of the merit function. (iii) It is shown that with an appropriate choice of termination condition, the method terminates in a finite number of iterations without the assumption of a constraint qualification. The method may be interpreted as an SQP method with an augmented Lagrangian safeguarding strategy. This safeguarding becomes relevant only when the iterates are converging to an infeasible stationary point of the norm of the constraint violations. Otherwise, the method terminates with a point that approximately satisfies certain second-order necessary conditions for optimality. In this situation, if all termination conditions are removed, then the limit points either satisfy the same second-order necessary conditions exactly or fail to satisfy a weak second-order constraint qualification. (iv) The global convergence analysis concerns a specific algorithm that estimates the least curvature of the merit function at each step. If negative curvature directions are omitted, the analysis still applies and establishes convergence to either firstorder solutions or infeasible stationary points. The superlinear convergence of the iterates and the formal local equivalence to stabilized SQP is established in a companion paper (Report CCoM 14-01, Center for Computational Mathematics, University of California, San Diego, 2014).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Globally Convergent Stabilized SQP Method

Sequential quadratic programming (SQP) methods are a popular class of methods for nonlinearly constrained optimization. They are particularly effective for solving a sequence of related problems, such as those arising in mixed-integer nonlinear programming and the optimization of functions subject to differential equation constraints. Recently, there has been considerable interest in the formul...

متن کامل

A Globally Convergent Stabilized Sqp Method: Superlinear Convergence

Regularized and stabilized sequential quadratic programming (SQP) methods are two classes of methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that allows convergence to points satisfying certain second-order KKT conditions (SIAM J. Optim., 23(4):198...

متن کامل

A stabilized SQP method: superlinear convergence

Regularized and stabilized sequential quadratic programming (SQP) methods are two classes of methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a stabilized SQP method has been proposed that allows convergence to points satisfying certain secondorder KKT conditions (Report CCoM 13-04, Center f...

متن کامل

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

Globalizing Stabilized Sqp by Smooth Primal-dual Exact Penalty Function

An iteration of the stabilized sequential quadratic programming method (sSQP) consists in solving a certain quadratic program in the primal-dual space, regularized in the dual variables. The advantage with respect to the classical sequential quadratic programming (SQP) is that no constraint qualifications are required for fast local convergence (i.e., the problem can be degenerate). In particul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015